首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:A Transfer Entropy Method to Quantify Causality in Stochastic Nonlinear Systems
  • 本地全文:下载
  • 作者:Jiaqi Gao ; Aditya Tulsyan ; Fan Yang
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2016
  • 卷号:49
  • 期号:7
  • 页码:454-459
  • DOI:10.1016/j.ifacol.2016.07.384
  • 语种:English
  • 出版社:Elsevier
  • 摘要:In modern chemical processes, identification of the process variable connectivity and their topology is vital for maintaining the operational safety. As a general information theoretic method, transfer entropy can analyze the causality between two variables based on estimation of conditional probability density functions. Transfer entropy estimation is typically a data driven method, however, the associated high computational complexity and poor accuracy are not acceptable in real applications. Using a nonlinear stochastic state-space model in conjunction with particle filters, a novel transfer entropy estimation method is proposed. The proposed approach requires less data, is fast and accurate.
  • 关键词:Causalitytransfer entropyparticle filtersstate-space models
国家哲学社会科学文献中心版权所有