期刊名称:AKCE International Journal of Graphs and Combinatorics
印刷版ISSN:0972-8600
出版年度:2017
卷号:14
期号:2
页码:172-177
DOI:10.1016/j.akcej.2017.04.003
语种:English
出版社:Elsevier
摘要:Abstract Let G be a graph of order n . Let f : V ( G ) ⟶ { 1 , 2 , … , n } be a bijection. The weight w f ( v ) of a vertex v with respect to f is defined by w f ( v ) = ∑ x ∈ N ( v ) f ( x ) , where N ( v ) is the open neighborhood of v . The labeling f is said to be distance antimagic if w f ( u ) ≠ w f ( v ) for every pair of distinct vertices u , v ∈ V ( G ) . If the graph G admits such a labeling, then G is said to be a distance antimagic graph. In this paper we investigate the existence of distance antimagic labelings of G + H and G ∘ H .