摘要:System identification of rhythmic locomotor systems is challenging due to the time-varying nature of their dynamics. Even though important aspects of these systems can be captured via explicit mechanics-based models, it is unclear how accurate such models can be while still being analytically tractable. An alternative approach for rhythmic locomotor systems is the use of data-driven system identification in the frequency domain via harmonic transfer functions (HTFs). To this end, the input-output dynamics of a locomotor behavior can be linearized around a stable limit cycle, yielding a linear, time-periodic system. However, few if any modelbased or data-driven identification methods for time-periodic systems address the problem of input and measurement delays in the system. In this paper, we focus on data-driven system identification for a simple mechanical system and analyze its dynamics in the presence of input and measurement delays using HTFs. By exploiting the way input delays are modulated by the periodic dynamics, our results enable the separate, independent estimation of input and measurement delays, which would be indistinguishable were the system linear and time invariant.
关键词:Time-delay estimationtime-periodic systemssystem identificationharmonic transfer functionslegged locomotion