首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Law of large numbers for critical first-passage percolation on the triangular lattice
  • 本地全文:下载
  • 作者:Yao, Chang-Long
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2014
  • 卷号:19
  • 页码:1-14
  • DOI:10.1214/ECP.v19-3268
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:We study the site version of (independent) first-passage percolation on the triangular lattice $T$. Denote the passage time of the site $v$ in $T$ by $t(v)$, and assume that $\mathbb{P}(t(v)=0)=\mathbb{P}(t(v)=1)=1/2$. Denote by $a_{0,n}$ the passage time from 0 to (n,0), and by b_{0,n} the passage time from 0 to the halfplane $\{(x,y) : x\geq n\}$. We prove that there exists a constant $0<\mu<\infty$ such that as $n\rightarrow\infty$, $a_{0,n}/\log n\rightarrow \mu$ in probability and $b_{0,n}/\log n\rightarrow \mu/2$ almost surely. This result confirms a prediction of Kesten and Zhang. The proof relies on the existence of the full scaling limit of critical site percolation on $T$, established by Camia and Newman.
  • 关键词:critical percolation; first-passage percolation; scaling limit; conformal loop ensemble; law of large numbers;60K35;82B43
国家哲学社会科学文献中心版权所有