首页    期刊浏览 2025年01月22日 星期三
登录注册

文章基本信息

  • 标题:On the Cover Time of Planar Graphs
  • 本地全文:下载
  • 作者:Jonasson, Johan ; Schramm, Oded
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2000
  • 卷号:5
  • 期号:0
  • 页码:85-90
  • DOI:10.1214/ECP.v5-1022
  • 出版社:Electronic Communications in Probability
  • 摘要:The cover time of a finite connected graph is the expected number of steps needed for a simple random walk on the graph to visit all the vertices. It is known that the cover time on any $n$-vertex, connected graph is at least $\bigl(1+o(1)\bigr)n\log n$ and at most $\bigl(1+o(1)\bigr)\frac{4}{27}n^3$. This paper proves that for bounded-degree planar graphs the cover time is at least $c n(\log n)^2$, and at most $6n^2$, where $c$ is a positive constant depending only on the maximal degree of the graph. The lower bound is established via use of circle packings.
  • 关键词:effective resistance, commute time, hitting time, difference time,circle packing, triangulation;60J10, 52C15.
国家哲学社会科学文献中心版权所有