首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Automatic recognition of driving scenarios for ADAS design
  • 本地全文:下载
  • 作者:Alberto Lucchetti ; Alberto Lucchetti ; Carlo Ongini
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2016
  • 卷号:49
  • 期号:11
  • 页码:109-114
  • DOI:10.1016/j.ifacol.2016.08.017
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Abstract In this paper, a method to characterize and automatically recognize the most common driving scenarios in on-road experiments is presented. The aim of the proposed approach is to build a suitable simulator to develop and test Advanced Driver Assistance Systems (ADAS’s). Therefore, unlike most of the existing algorithms, the whole procedure takes advantage of the intrinsic off-line nature of the problem. Context-free grammars are shown to be an effective and suitable tool for modeling the driving scenarios, while experimental results are used to validate the proposed approach and show limits and potential of a real-world application.
  • 关键词:KeywordsADASsimulationdriving scenario detection
国家哲学社会科学文献中心版权所有