首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Automated Modelling of Multimodal Data Processes in Remote Sensing
  • 本地全文:下载
  • 作者:Juan Dávila ; Juan Dávila ; Marek B. Zaremba
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:3
  • 页码:1918-1923
  • DOI:10.1016/j.ifacol.2015.06.367
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Abstract Automated monitoring of bio-geophysical phenomena, especially those occurring in large areas, requires the use of models obtained from remote sensing data. The interaction of multiple components in the optical data flow and the non-ergodicity of the acquisition process can seriously affect the precision of the models. In order to effectively deal with this situation, we are proposing an iterative semi-supervised learning framework that combines regression analysis leading to the final set of models with an iterative classification process, based on support vector machines (SVM) that generates data sets associated with each statistical modality. This paper presents an application of the proposed method in modeling the concentration of water pollutants, particularly chlorophyll-a, in inland waters using multimodal satellite data sets.
  • 关键词:KeywordsMultimodalityremote sensingbio-geophysical modelingsemi-supervised learning
国家哲学社会科学文献中心版权所有