首页    期刊浏览 2025年03月01日 星期六
登录注册

文章基本信息

  • 标题:Fault Detection and Diagnosis in a Bayesian Network classifier incorporating probabilistic boundary1
  • 本地全文:下载
  • 作者:Mohamed Amine Atoui ; Sylvain Verron ; Abdessamad Kobi
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:21
  • 页码:670-675
  • DOI:10.1016/j.ifacol.2015.09.604
  • 语种:English
  • 出版社:Elsevier
  • 摘要:The purpose of this article is to present a method for Fault Detection and Diagnosis (FDD) with Bayesian network, and more particularly with Conditional Gaussian Network (CGN). A classical problem of FDD with supervised classification is when Normal Operating Conditions class is integrated, the false alarm rate is not guarantee by the classifier. The interest of the proposed method is to introduce a probabilistic limit on the Normal Operating Conditions class, allowing to respect a given false alarm rate. Performances of this method are evaluated on data of a benchmark example: the Tennessee Eastman Process. Three kinds of faults are taken into account on this complex process.
  • 关键词:Fault DetectionFault DiagnosisFalse Alarm rateBayesian network
国家哲学社会科学文献中心版权所有