首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Data-Driven Approach of KPI Monitoring and Prediction with Application to Wastewater Treatment Process
  • 本地全文:下载
  • 作者:M. Krueger ; H. Luo ; S.X. Ding
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:21
  • 页码:627-632
  • DOI:10.1016/j.ifacol.2015.09.596
  • 语种:English
  • 出版社:Elsevier
  • 摘要:In this paper, a data-driven scheme of key performance indicator (KPI) monitoring, prediction and KPI related fault detection is applied to the wastewater treatment process (WWTP). By means of a data-driven realization of the so-called left coprime factorization (LCF) of the process, the efficient monitoring and prediction of chemical oxygen demand (COD) concentration in the effluent flow are realized both for the situation that COD is measurable and unmeasurable. The well established Benchmark Simulation Model no. 1 (BSM1) is utilized for the demonstration of the effectiveness of this approach.
  • 关键词:Data-drivenProcess monitoringKPI predictionWastewater treatment process
国家哲学社会科学文献中心版权所有