首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Transient modelling of heat loading of phase change material for energy storage
  • 本地全文:下载
  • 作者:W.M. Asyraf ; W.M. Asyraf ; Anusuiah Vasu
  • 期刊名称:MATEC Web of Conferences
  • 电子版ISSN:2261-236X
  • 出版年度:2017
  • 卷号:90
  • 页码:1-12
  • DOI:10.1051/matecconf/20179001078
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:As the development of solar energy is getting advance from time to time, the concentration solar technology also get the similar attention from the researchers all around the globe. This technology concentrate a large amount of energy into main spot. To collect all the available energy harvest from the solar panel, a thermal energy storage is required to convert the heat energy to one of the purpose such as electrical energy. With the idea of energy storage application that can be narrow down to commercial application such as cooking stove. Using latent heat type energy storage seem to be appropriate with the usage of phase change material (PCM) that can release and absorb heat energy at nearly constant temperature by changing its state. Sodium nitrate (NaNO3) and potassium nitrate (KNO3) was selected to use as PCM in this project. This paper focus on the heat loading process and the melting process of the PCM in the energy storage using a computer simulation. The model of the energy storage was created as solid three dimensional modelling using computer aided software and the geometry size of it depend on how much it can apply to boil 1 kg of water in cooking application. The materials used in the tank, heat exchanger and the heat transfer fluid are stainless steel, copper and XCELTHERM MK1, respectively. The analysis was performed using a commercial simulation software in a transient state. The simulation run on different value of velocity but kept controlled under laminar state only, then the relationship of velocity and heat distribution was studied and the melting process of the PCM also has been analyzed. On the effect of heat transfer fluid velocity, the higher the velocity resulted in higher the rate of heat transfer. The comparison between the melting percentages of the PCMs under test conditions show that NaNO3 melts quite faster than KNO3.
国家哲学社会科学文献中心版权所有