摘要:Several researchers have reported that Bishop’s mean effective stress decreases in unsaturated soils under fully undrained cyclic loading conditions, and unsaturated soils are finally liquefied in a similar manner as saturated soils. This paper presents a series of simulations of such fully undrained cyclic loading on unsaturated soils using an elastoplastic model of the unsaturated soil. This model is formulated using the Bishop’s effective stress tensor incorporating the following concepts: the volumetric movement of the state boundary surface containing the normal consolidation line and the critical state line due to the variation in the degree of saturation, a soil water characteristic curve model considering the effect of specific volume and hysteresis, the subloading surface model, and Boyle’s law. Comparisons between the simulation results and the experimental ones show that the model agreed well with the unsaturated soil behavior under cyclic loading. Finally, the typical cyclic behavior of unsaturated soils under fully undrained conditions, such as the mechanism of liquefaction of unsaturated soils, the compression behavior, and an increase in the degree of saturation, are described through the proposed simulation results.