首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Inferential Models for Linear Regression
  • 本地全文:下载
  • 作者:Zuoyi Zhang ; Huiping Xu ; Ryan Martin
  • 期刊名称:Pakistan Journal of Statistics and Operation Research
  • 印刷版ISSN:2220-5810
  • 出版年度:2011
  • 卷号:7
  • 期号:2-Sp
  • DOI:10.1234/pjsor.v7i2-Sp.301
  • 语种:English
  • 出版社:College of Statistical and Actuarial Sciences
  • 摘要:Linear regression is arguably one of the most widely used statistical methods in applications. However, important problems, especially variable selection, remain a challenge for classical modes of inference. This paper develops a recently proposed framework of inferential models (IMs) in the linear regression context. In general, an IM is able to produce meaningful probabilistic summaries of the statistical evidence for and against assertions about the unknown parameter of interest and, moreover, these summaries are shown to be properly calibrated in a frequentist sense. Here we demonstrate, using simple examples, that the IM framework is promising for linear regression analysis --- including model checking, variable selection, and prediction --- and for uncertain inference in general.
  • 关键词:Auxiliary variable, credibility, prediction, predictive random set, variable selection
国家哲学社会科学文献中心版权所有