首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:A comparison of HPM, NDHPM, Picard and Picard–Padé methods for solving Michaelis–Menten equation
  • 本地全文:下载
  • 作者:H. Vazquez-Leal ; H. Vazquez-Leal ; J. Rashidinia
  • 期刊名称:Journal of King Saud University - Science
  • 印刷版ISSN:1018-3647
  • 出版年度:2015
  • 卷号:27
  • 期号:1
  • 页码:7-14
  • DOI:10.1016/j.jksus.2014.11.001
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Abstract The fact that physical phenomena are modelled, mostly, by nonlinear differential equations underlines the importance of having reliable methods to solve them. In this work, we present a comparison of homotopy perturbation method (HPM), nonlinearities distribution homotopy perturbation method (NDHPM), Picard, and Picard–Padé methods to solve Michaelis–Menten equation. The results show that NDHPM possesses the smallest average absolute relative error 1.51(−2) of all tested methods, in the range of r ∈ [ 0 , 5 ] . Also, we introduce the combination of Picard’s iterative method and Padé approximants as an alternative to reduce complexity of Picard’s solutions and increase accuracy.
  • 关键词:Homotopy perturbation method; Picard’s method; Padé; Michaelis–Menten;
国家哲学社会科学文献中心版权所有