期刊名称:International Journal of Differential Equations and Applications
印刷版ISSN:1311-2872
出版年度:2012
卷号:11
期号:2
DOI:10.12732/ijdea.v11i2.535
语种:English
出版社:International Journal of Differential Equations and Applications
摘要:In this paper, by introducing $\alpha$-difference equation with the definition of generalized $\alpha$-difference operator, we discuss the general properties and boundedness behaviour of solutins of the generalized Riccati's $\alpha$-difference equation\begin{equation}{\label{ricc.01}}p(k)u(k+\ell)+\alpha^2 p(k-\ell)u(k-\ell)=\alpha q(k)u(k), k\in[\ell, \infty),\end{equation}where the real valued functions $p$ and $q$ are defined on $[\ell,\infty)$ and $p(k)>0$ for all $k\in[\ell,\infty)$. Equation (\ref{ricc.01}) equivalently can be written as\begin{equation}{\label{ricc.02}}-\Delta_{\alpha(\ell)}\Big(p(k-\ell)\Delta_{\alpha(\ell)}u(k-\ell)\Big)+\alpha f(k)u(k)=0, k\in[\ell,\infty),\end{equation}where $f(k)=q(k)-p(k)-p(k-\ell)$.