首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:APLIKASI GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) PADA PEMODELAN VOLUME KENDARAAN MASUK TOL SEMARANG
  • 本地全文:下载
  • 作者:Dian Anggraeni ; Alan Prahutama ; Shofi Andari
  • 期刊名称:MEDIA STATISTIKA
  • 印刷版ISSN:1979-3693
  • 电子版ISSN:2477-0647
  • 出版年度:2013
  • 卷号:6
  • 期号:2
  • 页码:61-70
  • 语种:English
  • 出版社:MEDIA STATISTIKA
  • 摘要:Time series data from neighboring separated location often associated both spatially and through time. Generalized space time autoregrresive (GSTAR) model is one of the most common used space-time model to modeling and predicting spatial and time series data. This study applied GSTAR to modeling vehicle volume entering four tollgate (GT) in Semarang City: GT Muktiharjo, GT Gayamsari, GT Tembalang, and GT Manyaran. The data was collected by month from 2003 to 2009. The best model provided by this study is GSTAR (2 1 )-I(1,12) uniformly weighted with the smallest REMSE mean 76834. Key words: GSTAR, Vehicle Volume, Space-Time Model
国家哲学社会科学文献中心版权所有