首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:PENGARUH PRINCIPLE COMPONENT ANALYSIS TERHADAP TINGKAT IDENTIFIKASI NEURAL NETWORK PADA SISTEM SENSOR GAS
  • 本地全文:下载
  • 作者:Muhammad Rivai
  • 期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
  • 印刷版ISSN:2302-9293
  • 出版年度:2007
  • 卷号:5
  • 期号:3
  • 页码:159-166
  • DOI:10.12928/telkomnika.v5i3.1360
  • 出版社:Universitas Ahmad Dahlan
  • 摘要:In recently, it has been developed a gas identification system consists of a semiconductor sensor array and Neural Network pattern recognition. In this study, it has been implemented a method of Principle Component Analysis (PCA) as a preprocessing of the Neural Network algorithm. The sensory array is composed of eight commercial semiconductor sensors. Three layer-Neural Network was trained with the back propagation technique within 5000 epochs. PCA could reduce the eight-dimension into three-dimension without any information losses. The identification error rate was lower with the ratio of ~ 10 -4 and the training period was shorter with the ratio of ~ 0.6. In generally, it can be concluded that the implementation of the PCA method into the Neural Network can enhance the performances of the neural include the identification rate and time consumed in the training phase.
  • 关键词:Semiconductor sensor array, Principle Component Analysis, Neural Network
国家哲学社会科学文献中心版权所有